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Abstract

In this paper, we present the data obtained from numerical experiments that are at the foundation of our successful
elasto-plastic force—displacement (FD) models in both the normal direction and tangential direction of spheres in
collision. We also present in detail how these data were obtained. Our numerical experiments are in the form of
frictional elasto-plastic finite-element analysis of spherical particles in contact. We use the numerical experiments to
observe the behavior of various quantities involved in the contact (e.g. contact-area radius, contact curvature, stresses,
FD relations, etc.). This observation has helped us to devise an accurate and consistent model for frictional elasto-
plastic contact of spherical particles that are used in granular-flow simulations that may involve tens of thousands of
these particles. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A growing number of agricultural and industrial processes involve particulate systems. These systems
pose significant challenges to the gathering of engineering data and to the design of handling equipment.
The chute flow of soybeans, for example, is difficult to study quantitatively given that most measurement
methods cause irrevocable changes to the flow. Nonintrusive experimental methods are available, but
equipment cost is often prohibitive. Computer simulation of such systems is a viable alternative.

The discrete element method (DEM) is a numerical simulation technique that can be used to investigate
the flow properties of granular materials. For a pair of particles in contact, the DEM employs force—dis-
placement (FD) models to calculate the resulting contact forces acting on the particles. The FD model
provides contact force as a function of relative displacement or overlap between the particles. Most
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simulation algorithms apply this function incrementally, with increments in displacement giving rise to
increments in contact force. All contact forces and moments acting on a particle are then used as input to
solve the equations governing the rigid-body motion of that particle. The solution of these equations of
motion will lead to new displacement increments, and the computational procedure repeats itself with the
computation of new increments of contact forces. The readers are referred to Vu-Quoc et al. (2000c) for a
detailed exposition of the DEM for the flow of elliptical particles.

In most granular flow regimes, it is unrealistic to assume that contact deformations remain in the elastic
range of material response, even though energy is dissipated through friction, since the coefficient of resti-
tution at impact is in general less than one, due to the plastic deformation that occurs near the contact point.
Energy dissipation resulting from plastic deformation is important and must be modeled. Ad hoc use of
dampers whose coefficients must be obtained through trial and error was often employed (e.g., Thornton and
Randall, 1988; Mishra, 1995). In our research program, we propose to develop an FD model that accounts
for frictional elasto-plastic response based on well-founded fundamental contact mechanics theory.

Despite the need to account for plastic deformation, elastic contact mechanics provides the foundation
for existing FD models. Hertz (1882) presented the normal FD (NFD) relation for spheres in contact and
subjected to a normal force. Using Hertz theory, Cattaneco (1938a,b,c) and Mindlin (1949) independently
derived the tangential FD (TFD) relation for identical elastic spheres in elastic-frictional contact, subjected
to a constant normal force and a varying tangential force. By far the most complex of the contact theories
is the one presented in Mindlin and Deresiewicz (1953), which provided an incremental TFD relation
for identical elastic spheres subjected to varying normal and tangential forces. For brevity, we refer to
the collection of these elastic frictional contact mechanics theories — i.e., Hertz, Cattaneo, Mindlin, and
Deresiewicz — together as the HCMD theory.

Some publications have presented partial validations of the components of the HCMD theory. Johnson
(1985) summarized results from experiments that reproduced key phenomena (e.g., micro-slip, energy loss,
attrition) of the theory’s tangential component. Shih et al. (1992) presented an experimental and FEA
validation of the stress distributions of Hertz theory, but no verification of the NFD relation. To the best of
our knowledge, a validation of the elastic-frictional TFD relation by FEA has not been widely known in the
literature. However, some publications have addressed similar effects in frictional contact studies (e.g.,
Chandrasekaran et al., 1987; Cuttino and Dow, 1997).

The effects of plastic deformation on FD relations have been studied only in the normal direction.
Johnson (1985) reviewed approximation formulas for the indentation of half-spaces of elasto-plastic ma-
terial by various rigid indenters. None of these formulas apply to the contact of two elasto-plastic solids. In
addition, these formulas do not approximate the loading-unloading relation, which is important for
granular flow simulations.

FD studies via elasto-plastic FEA also only addressed the normal direction. Walton (1993) determined
by FEA the NFD relation for elasto-plastic spheres in contact and subjected to increasing and decreasing
normal loads. Kral et al. (1993), Hardy et al. (1971), and Sinclair et al. (1985) each used FEA to charac-
terize the behavior of an elasto-plastic half-space indented by a rigid sphere. Kral et al. (1995a,b) performed
a similar investigation for the indentation of an elasto-plastic layered medium. There have been no pub-
lished studies on plastic deformation effects in TFD relations.

Some authors have addressed the coefficient of restitution as a measure of the effects of energy dissi-
pation during impact. Brilliantov et al. (1996) employed viscoelasticity as the energy dissipation mechanism
to calculate the coefficients of restitution for the normal and tangential directions of colliding particles as
functions of the impact velocity. Thornton (1997) employed elasto-plasticity as the energy dissipation
mechanism in his NFD model, which was consistent with the work of Davies (1949) (see also Bitter, 1963;
Johnson, 1985). None of the above references had a validation, experimentally or numerically.

By contrast, we have developed an accurate and simple frictional elasto-plastic NFD model (Vu-Quoc
and Zhang, 1999; Vu-Quoc et al., 2000b) and TFD model (Vu-Quoc et al., 2000a), all based on the FEA
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results presented in this paper. While the FD model is presented in other papers, we do provide in this paper
a few basic ideas at the foundation of our elasto-plastic FD model.

2. Normal FD relation
2.1. Hertz theory of normal contact

Hertz considered the normal contact of two spheres i and j, as shown in Fig. 1. (We review Hertz’s key
results in this section. For a more complete review, see Johnson, 1985.) For sphere i, we consider R; to be
the radius, v; the Poisson’s ratio, and E; the Young’s modulus. Similarly, R;, v;, E; are the properties of
sphere j. We (as well as other authors) define for the contact the equivalent elastic modulus E* and the
equivalent contact curvature 1/R* as

1 |
i J

and

Fig. 1. Two spheres in normal contact.
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a) b)
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Fig. 2. Contact area and Hertz pressure. (a) Circular contact-area (viewed from +z). Section B-B is a contact-area diameter. (b) Hertz
normal pressure at section B-B.

1 11
—i=(t . 2.2
R (R,-+Rj) (2.2)

Due to axisymmetry, the contact surface s between the spheres is circular with radius a (see Fig. 2(a)).
Hertz proposed that the normal pressure on this contact-area is half-elliptical in shape and independent of
the angular coordinate 6. That is, at a point 4 in the contact-area, at a distance r from the center O, the
normal pressure p(r) is given by

1/2

2r) = P [1 - (2)2} , (23)

where p;, is the maximum normal pressure occurring at » = 0. By integrating p over s and rearranging to
solve for py, we obtain
3P
- 2na?’
Fig. 2(b) shows the Hertz pressure distribution p(r) at a cross-section that is perpendicular to s and through
its diameter.

From considerations of surface displacements and contact boundary conditions, Hertz determined that
the contact-area radius is related to the normal force by

a= (3" R*)m. (2.5)

(2.4)

Pm

4E*
From the same considerations, Hertz found the mutual approach «;; of distant points in the spheres, given
by
2
R*
(see also Johnson, 1985). Substituting Eq. (2.5) into Eq. (2.6), we obtain the Hertz (i.c., elastic) version of
the NFD relation for contacting spheres, expressed as

) 1/3
168 (E")

Oljj = 0O + o = (26)



L. Vu-Quoc et al. | International Journal of Solids and Structures 38 (2001) 6455-6489 6459

Combining Eq. (2.5) with Eq. (2.4), we obtain

6P\
'm = , 2.8
p (nS R ) (2.8)
which provides the maximum contact pressure as a function of the input normal load and the spheres’
properties.

By combining expressions from Hertz theory with those of the von Mises yield criterion, one can
determine Py, the normal force that causes incipient yield in spheres in contact. We refer the reader to
Vu-Quoc et al. (2000b) for this derivation, but we provide the formula below:

3R2(1 — 42 2
3”(67”01, v =0.3. (2.9)

(A similar equation appears in Johnson (1985, p. 155, Egs. (6.9) and (6.10)), but that version was derived
using the Tresca yield criterion.)

Py = (1.61)

2.2. Finite element model for normal contact

Fig. 3 shows the domain of analysis for the normal contact of identical spheres of radii R = 0.1 m. We
apply a symmetric boundary condition along the z-axis and clamp the sphere’s equator. We apply the
normal load P to the rigid surface and constrain the rigid surface to move in only the z-direction. (Note that
although the domain is composed of a sphere and a planar surface, the deformable sphere and the rigid
plane distinguish the domain from those of Kral et al. (1993) and other authors who have modeled rigid
indenters contacting deformable half-spaces.)

Fig. 4 shows the FE discretization of the current domain of analysis. The FE mesh of the sphere contains
2204 quadratic axisymmetric triangular elements with ABAQUS designation CAX6. Each element has six

/v OHOHONONONGO

s
5

L (RSRN) M/

P

Fig. 3. Domain of analysis for normal contact of identical spheres.
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Fig. 4. Axisymmetric FE mesh for normal contact of identical spheres. High degree of mesh refinement near contact. Multiple point
constraints (MPCs).

integration points — three at the vertices and three on the element edges. To accomplish the degree of mesh
refinement that is shown in Fig. 4, we recursively split the triangular elements and impose quadratic
multipoint constraints (MPCs) on the nodes that lie on the interface between relatively coarse and relatively
refined mesh regions. In Fig. 4, circular markers designate nodes whose displacements are constrained by
MPCs.

As an indication of the degree of mesh refinement that is in Fig. 4, we compare the average edge lengths
of two elements within the FE mesh. Far from the contact-area, element Q, has an average edge length of
hy =1.59 x 107> m ~ R/6. Near the contact, however, element ©, has an average edge length of &, =
4.36 x 107> m ~ R/2300. (Note that we compare edge lengths because the edge length of ©, has important
implications for the determination of the FE contact-area radius apg. see Section 2.3.)

The rigid surface in Fig. 4 is a rigid surface segment that extends from L(—0.01,0,0) to A(0.05,0,0). We
take the node at L to be the rigid surface reference node (RSRN) and apply all loads to this node. To obtain
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Fig. 5. Normal loading histories.

FD relationships from the FEA, we track through time the applied normal force and the z-displacement of
the RSRN.

To impose contact constraints, we incorporate four-node rigid surface interface elements with ABAQUS
designation TRS22A. Each of these elements shares three nodes with a CAX6 element on the sphere’s
surface. The RSRN is the fourth node of all of the interface elements.

Fig. 5 shows the loading histories that we apply in this study of normal loading. While the loading rates
are uniform among the loading histories, the unloading rates vary. In fact, the loading and unloading rates
are irrelevant to the problem due to Remark 2.1.

Remark 2.1. We treat the contact of the spheres as a static problem in the FE solution procedure. In ad-
dition, we use time-independent plasticity as a material property. The applicability of static FE solutions to
the (dynamic) impact of spheres is ensured by the comparison of the impact velocity with the stress wave
velocity in the spheres’ material. As proposed in Johnson (1985), a quasistatic condition is achieved for two
impacting spheres when

vN\3/5

03(—) <1, (2.10)
w

where v is the impact velocity and w the wave velocity. For a thorough discussion of stress waves see

Goldsmith (1960). |

For the sphere of radius R = 0.1 m, we choose the material properties of the aluminum alloy Al 1100-
H14 (99% Al): Young’s modulus E = 7.0 x 10'© N/m?, Poisson’s ratio v=0.3, and yield stress
oy = 1.0 x 108 N/m?. Using Eq. (2.9), we find the normal force at incipient yield Py = 36.4 N for these
sphere properties. (Note, then, that loading history N3 reaches a maximum normal force that is approxi-
mately 41 times larger than Py. We expect significant plastic flow in the case of loading history N3.) Note
that the choice of these geometry and material properties is only for the numerical experiments. The results
are valid in general.

In our FEA involving elasto-plastic material properties, we apply the von Mises yield criterion. Ac-
cording to the von Mises criterion, yielding occurs when

f=h-kK=0, (2.11)

where k is a material property and .J, the second invariant of the deviatoric stress tensor S, given by
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J2 - %Si/’S,'j, (212)
where
Sy = 01 — 300k (2.13)
For perfect plasticity of the sphere material that we adopt in this study, the constant k is simply
gy
k=—, 2.14
7 (2.14)

where oy is the material’s yield stress under uniaxial tension. By substituting Egs. (2.12) and (2.14) into Eq.
(2.11), we express the yield criterion in the simpler form

3 1/2
OyM = ESUS” =0y, (215)

where o, is the von Mises equivalent stress.

Remark 2.2. Although perfect plasticity was used to model the material response, there is a ““shell” around
the plastic zone, that can take additional load. Thus when we look at the behavior of the contact-area
radius, observe a response that is similar to plasticity with hardening. |

2.3. FEA calibration

To calibrate the FE model of Fig. 4 we apply loading history N3 to a sphere with the elastic material
properties that are listed in Section 2.2. That is, we perform model verification without considering the von
Mises yield condition. We compare FE results (indicated by subscript FE) with quantities that are given by
Hertz theory (indicated by subscript H).

Fig. 6 shows for the elastic verification the normal force P plotted against the normal displacement og.
Recall that agg is the z-direction displacement of the RSRN. The P versus ogg relation follows closely the
Hertzian relation (2.7). At the maximum normal force Py = 1500 N, the displacement opg differs from the
prediction oy by only 0.37%. Note that the loading and the unloading curves both follow the same path in

1500 T T T T

O  FE loading
X FE unloading
—— Hertz theory
1000
Ay
7
500+ /
0 0.2 0.4 0.6 0.8 1 1.2 1.4

ag, apg (M) x10°

Fig. 6. Normal force P versus normal displacement arg for axisymmetric elastic verification. Loading history N3. Hertzian expression
given by Eq. (2.7).
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Fig. 7. Normal pressure prg exerted on IRS22A elements for the elastic verification. Hertzian expression for py given by Eq. (2.3). FE
contact-area radius: 1.13 x 1073 < apg < 1.17 x 1073 m.

the (P, o) space. This behavior is explained by the fact that we apply only elastic material properties and
also the fact that we use a frictionless rigid surface. There is no energy loss due to either plastic flow or
friction.

Fig. 7 shows at P = 1500 N the normal pressure ppg that is exerted on the IRS22A elements at the
sphere-rigid surface interface. The small edge lengths of the IRS22A elements result in a close approxi-
mation of the Hertz pressure py. The contact pressure for the data point at » = 0 is considerably lower than
that for the remaining data points. We attribute the difference to either (i) numerical errors, or (ii) incorrect
stress interpolation due to the missing adjacent (mirror image) element.

While the FE contact-area radius agg is not directly available as an output variable from ABAQUS, Fig. 7
implies that it is possible to determine a range of values for the location of the edge of the contact-area.
Recall that the contact-area radius is defined as the value of the radius r at which the normal pressure goes
to zero. In Fig. 7, we know only discrete values of normal pressure, but we surmise that, starting from the
node on the z-axis, apg must lie between the last node in contact and the first node that is not in contact. For
the data points that are shown in Fig. 7, apg lies in the range 1.13 x 1073 <apg <1.17 x 1073 m.

To obtain a specific value for arg, we choose the outermost or larger value of the range limits. That is, for
P; = 1500 N, the elastic verification predicts a contact-area radius of apg = 1.17 x 10~3 m. This value of apg
is 3.0% greater than the Hertzian value ag = 1.14 x 10~° m given by Eq. (2.5) from Hertz theory.

For simplicity, we use the name node-distance to describe the above method for determining apg. In
summary, the node-distance method interprets the FE contact-area radius arg as the radial position of the
first node that is not in contact with the rigid surface. Note that, as shown in Fig. 7, the choice of this node
inherently causes overestimation in the computed contact-area radius agg.

In Fig. 8 we plot the variation of agg with the normal force P, where each value of agg is determined via
the node-distance method. While the FE data in Fig. 8 does follow closely the Hertzian relationship in Eq.
(2.5), the FE curve does show the overestimation of arg due to the use of the node-distance method. That is,
arg > ayg for most values of P. A better estimation of arg could be employed, i.e., by averaging or by
polynomial extrapolation.

For the elastic verification, Fig. 9 shows the error a... := arg — ay for both loading and unloading. In
addition, Table 1 lists the values of the maximum, minimum, and mean a., for the loading and unloading.
Note that, as percentages of the maximum ay = 1.14 x 10~ m, the mean errors are small: 1.60% for
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Fig. 8. Computed contact-area radius arg versus normal force P for elastic verification. Hertzian expression for ay given by Eq. (2.5).
Node-distance method to determine apg.
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Fig. 9. Error a., in FE contact-area radius agg for elastic verification.

Table 1

Error ae, := apg — ay for elastic verification
Phase Max ae, (m) Min a.,, (m) Mean a,; (m)
Loading 3.86 x 1073 5.48 x 10-° 1.82x 1073
Unloading 4.16 x 1073 4.32 x 10°° 3.04 x 1073

loading; 2.67% for unloading. These relative error percentages are consistent with the node-distance
method to estimate arg as described above.

Near P; = 1500 N in Fig. 8, the FE curve exhibits a short plateau within which apg appears to be
constant. This plateau occurs due to the small magnitudes of the nodal displacements in comparison with
the IRS22A element dimensions. That is, for data points within the plateau, the contact-area radius appears
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to be relatively constant because no new nodes are being added to the contact. While the contacting nodes
do experience small displacements that represent changes in contact-area radius, these displacements are
not large enough to show visible changes in arg.

In summary, in the elastic FEA verification, the normal stress distribution and the NFD relation are not
as sensitive to mesh refinement as are the tangential stress distribution and the TFD relation. We attribute
this difference to the presence of friction on the contact surface in the tangential loading case. See Section
3.3 for the results of the elastic FEA verification in the tangential direction. The elastic verification analysis
required 3.0 min of CPU time on a DEC Alpha 250 workstation with 64 MB of RAM and running DEC
Unix 3.2.

2.4. Elasto-plastic analyses

For an estimation of the behavior of elasto-plastic contacting spheres in the normal direction, we
consider the von Mises yield criterion as part of the FEA. We apply the loading histories N1 through N3
and refer to the corresponding elasto-plastic cases as NEP1 through NEP3, respectively.

Fig. 10 shows the plot of the normal force P against the computed normal displacement org. During the
P-increasing phase of each loading history, the P versus ogg curve is softer (of lower slope) than is predicted
by the Hertzian expression (2.7). For each loading history in Fig. 10, a maximum normal displacement o*
occurs at the maximum normal force P*. For all loading cases, the plastic flow within the spheres causes this
maximum displacement to be greater than is predicted by Hertz theory. Table 2 lists the maximum dis-
placements for the elasto-plastic analyses.

Py = 1500 ¥
N
— Hertz (2.7) i
NEP1 o F
NEP2 o
NEP3 A
K
AL
K
Y
;
£
/
oy —
/— o :
e o2 oa 08 08 1 12 14 16
oy, apg (M) x10°

Fig. 10. Normal force P versus normal displacement ogg for axisymmetric elasto-plastic analysis. Hertzian curve given by Eq. (2.7) for
both loading and unloading.

Table 2

Maximum and residual displacements, areas and coefficients of restitution for NFD curves of Fig. 10 (elasto-plastic analysis)
Case o (m) of (m) Area (Nm) e
NEP1 6.69 x 10°° 2.01 x 10°° 417 x 107* 0.841
NEP2 1.14 x 1073 4.55x10°¢ 1.94 x 1073 0.776

NEP3 1.56 x 1073 7.10 x 1076 4.58 x 1073 0.738
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At the instant that P* occurs, unloading begins and the normal displacement decreases. Because per-
manent plastic strain occurs within the spheres, the unloading P versus ogg relationship is not the same as
that for loading. Some energy dissipation occurs as a result of the plastic deformation (damage) in the
material. Consequently, at the end of unloading, when the normal force P returns to zero, a non-zero re-
sidual displacement o remains. The magnitude of o increases with the magnitude of P* as higher maximum
force levels cause more permanent damage. See Table 2 for a list of the residual displacements for the
elasto-plastic analyses.

An additional measure of the damage to the spheres is the area that is contained within the NFD
(P versus o) curves. The contained area is equal to the energy that is dissipated during the complete load—
unload cycle. In terms of the areas, we formulate the classical coefficient of restitution e as

oo \/area under unloading curve (2.16)

area under loading curve

Equivalently, the coefficient e is simply the fraction of energy that is returned at the end of a complete load—
unload cycle. Table 2 shows the areas and coefficients of restitution corresponding to the NFD curves of
Fig. 10.

Note that, as shown in Table 2, the coefficients of restitution for the FE cases under consideration
decrease as the maximum normal force increases. From a dynamic standpoint (i.e., as opposed to quasi-
static) the maximum normal force exerted between colliding spheres increases as relative incoming velocity
of the spheres increases. The decrease of coefficient ¢ with increasing incoming velocity has been verified
experimentally by Goldsmith (1960).

Fig. 11 shows, for the elasto-plastic analysis, the normal pressure prg that is exerted on the IRS22A
elements at the three values of maximum normal force level P*. Note that the plastic flow in the spheres
causes the normal pressure profiles to be flattened to values that are below the Hertz pressure. In each case,
the normal pressure prg appears to be distributed over a contact-area with a radius that is larger than the
Hertz radius.

The anomalous data point at » =0 in Fig. 11 appears for all three normal force levels at a normal
pressure of approximately 1 x 10% N/m?. This anomaly is attributed to the finite element method employed

r(m) x 10

Fig. 11. Normal pressure prg exerted on IRS22A elements for axisymmetric elasto-plastic analysis. Flattening of pressure profile and
increase of contact-area.
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Fig. 12. Contact area radius apg versus normal force P for axisymmetric elasto-plastic analysis.

to analyze this problem. While this anomalous pressure value is equal to the material yield stress oy, we
consider this fact to be coincidental. In a similar analysis with oy = 2 x 108 N/m?, we did not observe the
anomalous point to be at a normal pressure of 2 x 103 N/m?. In addition, recall that a similar data point
appeared in the elastic verification of Fig. 7, in which we did not consider elasto-plasticity.

Fig. 12 shows, for the elasto-plastic analysis, the contact-area radius apg plotted against the applied
normal force P. We once again use the node-distance method to determine the contact-area radius agg.
During the loading phase of each elasto-plastic case, apg increases to values that are consistently greater
than those given by the Hertz expression (2.5). As the normal force increases, so does the difference
arg — ag. At all values of the normal force P, the difference arg — ay for the elasto-plastic cases is larger
than the same difference obtained in the elastic verification. The reason for the larger contact-area radii in
the elasto-plastic case is the plastic deformation (and not the overestimation of the contact-area radius agg
due to the use of the node-distance method).

Near the termination of each loading phase as shown Fig. 12, the apg versus P curves reach a plateau
that is similar to that presented in Fig. 8. We attribute such behavior once again to the relatively small
nodal displacements at the contact. Even under plastic deformation, the nodal displacements are not large
compared to the element dimensions.

During the unloading phase of each elasto-plastic case, Fig. 12 shows that the agg versus P relationship is
not the same as that during the loading phase. In fact, the difference between agg and ay during unloading
does not vary significantly over almost the entire range of the normal force values. This observation is
critical in the successful construction of our elasto-plastic NFD model.

By identifying and quantifying trends in the previous FEA results, we can begin to develop a new NFD
model for the contact of elasto-plastic spheres. While we describe this NFD model in complete detail in Vu-
Quoc et al. (2000b) and in Vu-Quoc and Zhang (1999), we include below a brief discussion of the relevant
data reduction that is at the foundation of this accurate and efficient elasto-plastic NFD model.

We define the elasto-plastic contact-area radius «°® as the radius of the circular contact-area that exists
between elasto-plastic spheres in normal contact. We assume that ¢ may be decomposed additively as

a® =da° +ab, (2.17)
where a° is the elastic (Hertzian) part of the contact-area radius and aP the plastic correction part. For a

normal force P applied to two contacting elasto-plastic spheres, the elastic contact-area radius «° is given by
the Hertz expression (2.5). Taking the computed contact-area radius arg as an estimate for the elasto-plastic
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Fig. 13. Plastic correction aP of elasto-plastic contact-area radius a* =~ apg for the axisymmetric elasto-plastic analysis.

contact-area radius af for the spheres and loading histories in the present study, we can compute the plastic
correction part aP of the contact-area radius as follows

ab = dFg — ay-. (218)

In Fig. 13, we plot the computed plastic correction a? = apg — ay versus the normal force P for this
elasto-plastic analysis. The increase of aP during loading appears to be roughly linear up to the largest
maximum normal force P;. When unloading begins at each value of P*, a® shows an immediate increase
that is the result of the plateaus that appear in Fig. 12. Following this brief increase, there is an interval in
which aP is roughly constant until near the end of unloading, where a? shows a steep decrease.

Given our definition of aP as the plastic correction part of the contact-area radius a*f, we expect a® to be
non-zero only for normal forces of magnitude greater than Py during the first virgin loading. This sup-
position is further supported by the observation that a? in Fig. 13 shows a linear increase only after a brief
interval of small normal force values. To describe aP as a function of the normal load P, we make use of the
MacCauley bracket defined by

0 forx<oO
o ={

x forx>0° (2.19)

Based on the above observation, we approximate the behavior of the plastic correction part a” by the
following expression

@ (P) = ky(P — Py), (2.20)

where k, is a constant that depends on the spheres’ material and geometric properties. The meaning of Eq.
(2.20) is clear: Plastic correction of the contact-area radius occurs only for normal load P beyond the yield
normal load Py.

To determine the constant &,, we perform a least squares fit of the loading data for the elasto-plastic case
NEP3. We use Matlab’s built-in function n1infit. m, which employs the Gauss—Newton (GN) method.
For the FE data of the current investigation, the curve fit yields the constant k, = 2.33 x 10~7 m/N.

In Fig. 14, we show the linear curve fit together with the FE data of the loading phase of NEP3. Since we
take the independent variable to be (P — Py), the figure does not show data points for P < Py. Note that the
fitted curve is significantly lower than the FE data that is shown. We attribute this under approximation to
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Fig. 14. GN curve fit of a” data for NEP3 loading.

the fact that we force the fitted curve to pass through the origin in Fig. 14. That is, the FE data may be
better approximated by a linear function

a’(P) = k(P — P)° + kD (P — P)", (2.21)

where £” is an additional constant. This form of the fitted curve, however, implies that a?(P) becomes
nonzero at the instant that P > Py, thus causing a discontinuous transition between elastic and plastic
regimes. Recall also that the FE data of Fig. 14 is likely shifted up due to the overestimation of agg that is
part of the node-distance method. Given this erroneous upward shift of the data, we choose to omit the
constant £{”. We note that the final results using Eq. (2.20) in our NFD model — for both the displacement-
driven version (Vu-Quoc and Zhang, 1999) and the force-driven version (Vu-Quoc et al., 2000b) — are
accurate.

Fig. 15 shows the plot of normal displacement o versus contact-area radius apg for the elasto-plastic
analysis. The plot also includes the parabolic Hertzian relationship (2.6) for comparison. During the

-5

16x10

1al|— Hertz ;/% |
o NEP1 Hertz load/unload . A

ol |¥ NEP2 \ P
+ NEP3 P

ay, app (M) x107°

Fig. 15. Normal displacement org versus contact-area radius apg for axisymmetric elasto-plastic analysis. Hertz expression given by
Eq. (2.6).
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Fig. 16. Plastic deformation causes increase in radius of curvature local to the contact-area.

loading portion of each elasto-plastic case, for P > Py, for a given normal displacement «, the elasto-plastic
contact-area radius apg is larger than the elastic Hertzian contact-area radius ay, and this difference grows
gradually larger as the normal load P increases well beyond Py. During unloading, the permanent defor-
mation of the material causes the apg versus apg relationship to be different from that obtained during
loading. Each unloading curve terminates at a point that defines the residual displacement «" and residual
contact-area radius a;.

As plastic flow occurs during the loading phase, there is a “flattening” of the sphere at the contact point,
resulting in an increase in the radius of curvature at the contact point. We use the symbol R}, to designate
this elasto-plastic radius of curvature for the loading phase. Since increasing normal force causes increasing
plastic flow, we expect R}> ; to increase with the quantity (P — Py). Fig. 16 presents a graphical explanation
of the flattening of the sphere due to plastic flow in the loading phase.

To model the relationship among the normal displacement apg, the contact-area radius apg, and the
radius of curvature R® ;, for the elasto-plastic loading cases, we consider equivalent elastic spheres with
radii of curvature R}> ,, and such that Hertzian relationships hold among the quantities org, apg, and R ;.

The parabolic Hertz expression (2.6) relates the normal displacement o to the contact-area radius a in the
form

o =—

z
Assuming that a parabolic relationship similar to Eq. (2.6) applies for the equivalent elastic spheres, we seek
an expression of the form

_ (are)’ 2.22
OCFE - Rlepd ( * )

that approximates the loading part of the FE curve of Fig. 15. To accommodate the increase of R ; with
normal force, we propose the relationship
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Rload = CloadRa (223)

where cj,,q = 1 1s a dimensionless coefficient that indicates the amount of increase in the radius of curvature
due to plastic flow. Based on our observation of the numerical results, we approximate the relationship
between the coefficient cj,q and the normal force P as follows

Cload = 1 + kc<P - PY>7 (224)

where k. may depend on the geometric and material properties of the spheres. Note that Eq. (2.24) gives
Cload = 1 for P < Py, implying that R> , = R when plastic flow does not occur. Fig. 17 shows the variation
of ¢joaq With the normal force P.

Combining Egs. (2.22) through (2.24), we obtain

_ (aFE)2
= k(P — PY)R’ (2.25)

where k. remains unknown. Using once again function n1infit. m, we fit Eq. (2.25) to the loading data of
NEP3 for P > Py. The curve fit results in k&, = 2.69 x 1074 N~'; a substitution of this value of k. into Eq.
(2.25) yields the curve shown in Fig. 18.

Note that the constant k. needs only be determined for the /loading of the elasto-plastic spheres. At the
start of unloading, we assume that plastic flow effectively ceases and that the unloading radius of curvature
R .. takes the value of R® | from the termination of the loading. That is, during unloading from a

unload
maximum normal force P*, we have
cp _ *
Runload - cloadR7 (226)
where

g = 1+ ke(P* = Py). (2.27)
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Fig. 18. Normal displacement arg versus contact-area radius apg for loading. Fitted expression (2.25) and loading data for NEP3.

The constant ¢}, is the value of cjpq at the end of the loading phase. For parallelism with the loading
notation, we rewrite Eq. (2.26) as

Ri[r)lload = cunloadR7 (228)

where cynioad = - Fig. 17 shows the variation of cynioad With P*.

To fit a curve through the unloading part of the FE data in Fig. 15, it is not sufficient to simply substitute
R . into an expression of the form Eq. (2.22). We must account for the residual displacement o' that
remains at the end of each unloading phase. To this end, we propose that the difference (org — of) is related
to the elastic part a® of the total contact-area radius in the manner

(@)
Ofg — 4 = RT, (229)

unload

where R” . is calculated from Eq. (2.28) and a° is given by the Hertz expression (2.5). Note that in Eq.
(2.29), we relate (opg — o") to a® since we consider the plastic part a® of arg to be fixed during unloading and
not recoverable.

To compute the residual displacement o in Eq. (2.29), we consider the turning point where the dis-
placement o* is known from the loading portion of the fitted curve. To determine the elastic contact-area
radius ¢ at the turning point, we substitute P* into Eq. (2.5). Substituting a¢ and «* into Eq. (2.29), we solve

for the residual displacement to obtain

o =o —

2.30
Rirr’lload ( )
By substituting Eq. (2.30) into Eq. (2.29), we determine an expression for the unloading curves shown in
solid lines in Fig. 19.
The execution times for the elasto-plastic analysis increase with the maximum normal force. On a DEC
Alpha 250 workstation with 64 MB of RAM and running DEC Unix 3.2, elasto-plastic cases NEP1, NEP2,
NEP3 require 3.4, 5.2, and 5.8 min of CPU time, respectively.
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Fig. 19. Normal displacement arg versus contact-area radius apg for unloading. Fitted expression (2.29) and loading data for NEP1
through NEP3.

3. Tangential FD relation
3.1. Tangential contact mechanics theories

Fig. 20 shows two identical spheres in frictional contact and subjected to normal force P and tangential
force Q. Existing theories for such a contact address two problem domains: P constant, Q varying; P and Q
varying. In this section, we summarize the principles and results of these two subclasses of contact.

3.1.1. P constant, Q varying
The problem of P constant and Q varying was solved independently by both Cattaneo (1938a,b,c) and
Mindlin (1949). Each addressed the problem under the following assumptions:

e Hertzian normal pressure on the contact surface.

o Effects of normal and tangential force can be treated independently.

e Complete sticking on the contact surface will cause the tangential stress distribution to go infinity at the
edge of contact.

The final assumption above introduces the concept of slip, which alleviates the otherwise infinite tan-
gential stress at the edge of the contact-area. Fig. 21(a) shows the slip area, an annulus ¢ < r < a in which the
tangential stress ¢ is the friction limit ¢,, = up. The inner radius ¢ of the slip region is known as the slip
radius, and approaches zero as the applied tangential force approaches Q,, = uP.

Cattaneo (1938a,b,c) and Mindlin (1949) each applied a superposition method to determine the tan-
gential stress ¢ on the contact-area. (Johnson (1985) refers to this method as Cattaneo’s technique.) The
result of the superposition is the stress distribution ¢ shown in Fig. 21(b). The stress profile is given by

3uP
@ =), c<r<a,

. (3.1)
3upP (az . r2)1/2 _ (CZ _ rz)l/z}, r<e.

2na’
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Fig. 21. Slip region and tangential stress distribution. (a) Annulus of slip. Section 4-4 is aligned with a contact-area diameter. (b)
Tangential stress on the contact-area, at section 4-A.



L. Vu-Quoc et al. | International Journal of Solids and Structures 38 (2001) 6455-6489 6475

By integrating Eq. (3.1) over the contact-area and setting the result equal to the applied tangential force,
Cattaneo (1938a,b,c) and Mindlin (1949) arrived at the following expression for the slip radius:

c:a<L~g>m. (3.2)

From the above expression, one observes that the slip region is nonexistent (i.e., ¢ = a) only when Q = 0, or
when the tangential force is not applied.

By considerations of displacements due to slip and stick, Mindlin (1949) determined the net displacement
of the spheres relative to the contact-area as follows

2/3
~(-5)
uP

where G is the shear modulus. To determine the tangential compliance ¢t for the contact, Mindlin (1949)
differentiated Eq. (3.3) with respect to Q to obtain

._@_Q 1_2
“TT20 " 8Ga P

32 —v)uP

0= 16Ga

, (3.3)

—(1/3)
) (P constant, Q /), (3.4)

which is the inverse of the tangential stiffness Kt, given by

1 8Ga o\
Kr:=—= 1-= . 3.5
T 2—v< ,uP) (3:5)

While Eq. (3.3) does provide tangential displacement explicitly in terms of tangential force, such an
expression is possible only because the normal force is constant. In cases of varying normal force, Egs. (3.4)
and (3.5) provide the foundation for more general incremental solutions for tangential displacement.

Using an argument similar to that for the case where Q increases, Mindlin and Deresiewicz (1953) de-
termined expressions for the case of Q-decreasing from some maximum (or turning point) tangential force
Q. The tangential displacement for this case is given by

0 -0 2/3 0 2/3
2@—7m7) _Q_EQ 1l (3.6)

where a is the contact-area radius, which is a constant since P is unchanging. Differentiating once again
with respect to Q, one can obtain compliance and stiffness expressions for O-decreasing. The expression for
the compliance is shown below, while that for the stiffness (the inverse) is left to the reader.

2-v(, 0-0
T~ 8Ga 2uP

3(2 —v)uP

0="T16Ga

—(1/3)
) (P constant, Q ). (3.7)

Fig. 22 summarizes the relationship between Q and ¢ for the case of constant normal load. Note that, as
indicated by Eq. (3.6), a residual displacement ¢, exists at Q = 0 in the Q-decreasing phase of the loading
history. This residual displacement is a result of the energy loss that occurs due to the presence of friction
on the contact-area. In addition, the energy loss causes the Q-0 plot to take the form of a hysteresis loop,
with the same amount of energy lost during each complete loading cycle.

3.1.2. P varying, Q varying

The problem of varying normal and tangential forces was solved in Mindlin and Deresiewicz (1953).
These authors applied an incremental method to determine tangential-compliance expressions for different
cases of varying P and Q. To develop our TFD model, we consider the following two frequent cases:
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Fig. 22. TFD plot for case of P-constant, Q-varying. Hysteresis loop and residual displacement.

e P and Q both increasing, which would occur during many loading phases.
e P and Q both decreasing, which would occur during many unloading phases.

The analysis of Mindlin and Deresiewicz (1953) is complex, so we refer the reader to the original paper
for the details. Additional helpful references are Johnson (1985), Jaeger (1992, 1999).

For the case of P and Q both increasing, Mindlin and Deresiewicz (1953) determined two compliance
expressions shown below

2—v| dp dp o\ " dp 1
== " |\u= —u— = <— <= .
T = $6Ga ”dQ+(1 “dQ)(l MP)  Sae S (338)
2—v dP _ 1
= — > . .
cT SGaa dQ 1 (39)

Note that, in the above expressions, dP/d¢ > 0, which implies that a is not a constant as it is in Cattaneo’s
analysis.

For the case of P and Q both decreasing, Mindlin and Deresiewicz (1953) determined the following
tangential compliance expression:

dp dp o —o\ " dp
—u@—F(l—ku@)(l— 5P ) ; @20 (3.10)

(Mindlin and Deresiewicz (1953) did determine another compliance expression for the case of P and Q both
decreasing. This expression applies for Q = Q*, and is not discussed here.)

2—vy
8Ga

ct =
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3.2. Finite-element model for tangential contact

Recall that in Section 2.2 we applied a frictionless rigid surface to represent the plane of symmetry that
exists at the contact plane between two identical spheres subjected to a normal load. While we studied only
frictionless spheres in that analysis, this symmetry condition exists even for frictional spheres as long as they
are identical in radii and material properties and subjected to only a normal load.

In the case of identical frictional spheres subjected to normal and tangential loads, it is not possible to
apply this symmetry condition in general. First, to avoid rigid body motion of the spheres, the rigid surface
would have to be frictional at least while the tangential force is applied. Second, a frictional rigid surface
would induce tangential stress at the spheres’ surfaces even under normal loading without a tangential force.
One can derive artificial loading histories and material behaviors that avoid these pitfalls, but these special
cases are few in number and are not representative of real contacts. (One example is normal loading without
friction followed by tangential loading with friction and constant normal load.)

Considering the above restrictions, we study the case of oblique loading by actually modeling the two
contacting deformable solids; the rigid contact surface is omitted. By invoking the Saint Venant principle,
we limit the domain of FE discretization to the gray domains shown in Fig. 23. We model only the region
closest to the contact-area, since Hertz theory shows that stresses decrease rapidly away from the contact-
area and toward the centers of the spheres. The geometric and elastic sphere properties are identical to
those used in the normal loading analysis (R = 0.1 m, £ = 7.0 x 10" N/m?, v = 0.3). In the elasto-plastic
analysis, we consider, however, two yield stress values: oy = 1.0 x 10> N/m? (also used in the normal
analysis); and oy = 2.0 x 10 N/m>.

We clamp the upper surface s; of the upper solid (Fig. 23), and apply all loads to the lower surface s; of
the lower solid. We constrain all points on s; to undergo identical displacements, producing the effect of

z

° G (sphere center)

|

L reference node

surface s;: movable plate (no rotation)

P

Fig. 23. Domain of FE discretization analysis for oblique force loading.
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loads applied to a rigid surface without rotation. Note that this rigid surface is only a boundary condition,
serving to transmit loads to the solids. It is not involved in the contact constraints as in the case of normal
loading. Although we do not require a rigid-surface reference node as in the normal loading case, we do
designate one node as an informal reference and measure all displacements at this location. This node is
indicated in Fig. 23.

We divide each solid (gray zone in Fig. 23) in the current analysis into two major subdomains. The core
of each solid, with highly refined FE mesh, is defined by the core construction angle y, = 0.8°. The exterior
of each solid, with less refined FE mesh, is defined by the exterior construction angle y, = 20°. We carefully
choose loading histories such that the contact occurs entirely within the surfaces of the core regions with
highly refined FE mesh; the exterior regions are not involved in the contact.

Fig. 24 shows an isometric view of the FE discretization of the gray zones in Fig. 23. The model contains
a total of 3420 C3D8 elements (1710 for each solid), where the C3D8 designation specifies a 3D element
having eight nodes and eight integration points (i.e., an eight-noded brick or hexahedral element). The
current mesh represents a system with 15,114 equations and, after applying the Cuthill-McKee node re-
numbering, a bandwidth of 168.

To convey the degree of discretization in the current mesh, we once again compare the average edge
length of an element near the contact with that of an element far from the contact. Fig. 25(a) shows element
Q,, which is far from the contact-area, and has an average edge length of 113 x 107* m ~ R/9. In com-
parison, Fig. 25(b) shows element Q,, which is near the contact-area, and has an average edge length of
2.25 x 107* m ~ R/444.

We enforce the contact constraint by specifying in the ABAQUS input file that the two deformable solids
(gray zones in Fig. 23) make up a CONTACT PAIR. For each node on the first surface of the contact pair,
ABAQUS attempts to find the closest point on the second surface of the contact pair where the normal to
that surface passes through the node. ABAQUS then discretizes the interaction between this point on the
second surface and the node on the first (see Hibbitt et al., 1995; Chapter 5).

Figs. 26 and 27 show the loading histories Ol and O2 for the present analysis with oblique forces. The
two loading histories actually demonstrate four cases of oblique loading:

=\
il
sl | g
— [ 1 !Hﬂh =
i
—

Fig. 24. Discretization used in our study of oblique contact.
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Fig. 25. Degree of discretization for current FE mesh. (a) View of discretization from —y. Element Q; average edge length approxi-
mately R/9. (b) View of discretization from —z (lower solid not shown). Element Q, average edge length approximately R/444.
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Fig. 26. Loading history O1: P-constant, Q-varying.
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Fig. 27. Loading history O2: both P and Q varying.

e P-constant, Q-increasing (01, ¢t = [1,2]);
e P-constant, Q-decreasing (01, ¢t = [2,3]);
e P-increasing, Q-increasing (02, t = [1,2]);
e P-decreasing, Q-decreasing (02, ¢ = [2,3]).

Note that loading history O1 includes friction during the application of the normal load. The presence of
friction during this phase of the loading is permitted because we model two identical spheres, rather than a
single sphere and a rigid surface. Note also that loading history O2 is a simple loading history, defined in
Definition 3.1.

Definition 3.1. (simple loading history). A simple loading history is a loading history in which the rate of
change of tangential force Q always exceeds the rate of change of the quantity uP. Since p is typically a
constant, a simple loading history is defined by

Y
di

dp

>'ua

=

, (3.11)

or, in terms of force increments, |AQ| = u|AP|.

In terms of the methodology of Mindlin and Deresiewicz (1953), a simple loading history is one in which,
after each application of the increments of P and Q, the tangential stress distribution is similar to the one
obtained in Cattaneo’s elastic-frictional contact analysis of tangential loading under constant normal
force. Thus, for cases with Q-increasing, for example, the tangential stress distribution must resemble that
given by Eq. (3.1). (We have not presented Cattaneo’s tangential stress distribution for P-constant and
QO-decreasing, see Johnson, 1985.)

3.3. FEA calibration
To calibrate the FE model for oblique loading, we apply loading histories O1 and O2 to contacting

spheres with purely elastic properties. That is, we run the ABAQUS analysis without consideration of the
von Mises yield condition. (In the normal FEA calibration, one loading history was sufficient to show the
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Fig. 28. Normal force P versus normal displacement a for FEA calibration under loading history O1.
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Fig. 29. Normal force P versus normal displacement « for FEA calibration under loading history O2.

validity of the FEA mesh. In the oblique FEA, we validate with both loading histories since there are two

varying forces.)

Figs. 28 and 29 show the performance of the current FE mesh as it relates to the normal loading history.
Both loading histories exhibit close comparison to the Hertz theory, but both also show NFD curves that
are stiffer than the elastic contact mechanics prediction. That is, for loading history O1, the normal dis-
placement at the maximum normal force is 6% less than the prediction; for loading history 02, the normal
displacement at the maximum normal force is 5.4% less than the prediction.

Figs. 28 and 29 clearly show that the 3-D FEA model results in NFD predictions that are stiffer than
both Hertz theory and axisymmetric FEA. (Recall that, as shown in Fig. 6, the axisymmetric analysis
resulted in a maximum NFD deviation of just 0.37%.) We propose the following reasons for the increased

stiffness in the 3-D analysis:
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e The relatively large aspect ratio of some elements far from the contact-area (see Fig. 24).
e The consideration of subdomains that are too small relative to the size of the contact-area. That is, per-
haps either the core construction angle y, or the exterior construction angle y, need to be increased (see

Fig. 23).

e Comparison to NFD results for Hertz’s analysis of elastic half-spaces. The half-space analysis cannot be

considered exact for either finite objects or large contact-areas.

Figs. 30 and 31 show TFD curves for the current FEA calibration. In both sets of results, the plots are
again stiffer than the contact mechanics prediction. For loading history O1, the maximum tangential dis-
placement is 2% less than the prediction; for loading history O2, the FEA displacement is 1.6% less than the

prediction.
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Fig. 30. Tangential force Q versus tangential displacement 6 for FEA calibration under loading history O1.

400

0.5 1

4

350

Fig. 31. Tangential force Q versus tangential displacement ¢ for FEA calibration under loading history O2.

o]

— Mindlin & Deresiewicz [1953]

ABAQUS

s
05

25

-6

x 10



L. Vu-Quoc et al. | International Journal of Solids and Structures 38 (2001) 6455-6489 6483

x10°
12 . . . ¥ . : .

i o ABAQUS 833
10l i\ |x ABAQUS CPRESS ||
¢t |— Hertz (2.3)

p (N/m?)

Fig. 32. Normal pressure and principal stress for loading history Ol at maximum normal force.

Note that the theoretical solutions in Figs. 28-31 arise from similar foundations of contact mechanics,
but are plotted in inherently different ways. The Hertz NFD plots are a result of the application of Eq. (2.7),
i.e., the actual NFD equation. The Cattaneo—Mindlin plots, however, result from the repeated application
of Eq. (3.9), i.e., the slope of the Cattaneo—Mindlin solution (3.3).

Fig. 32 shows two measurements of stress at the maximum normal force in loading history O1. The
ABAQUS variable CPRESS is the normal contact pressure that is measured during the discretization of
the CONTACT PAIR contact. The ABAQUS variable S33 is the principal stress in the direction normal to the
contact-area, measured at the nodes of the C3D8 elements. The results for CPRESS closely match the Hertz
prediction, with the exception of the stray data point at » = 0. Since the plot of S33 is well-behaved, we
attribute this anomalous point to a singularity in the FEA model. (Recall that we observed a similar
anomalous point at » = 0 in the validation of the axisymmetric FEA model.)

In Fig. 32, the value of CPRESS decreases to zero at a radial value that is significantly larger than the
Hertz prediction. We attribute this result to the relatively low resolution provided by the contacting ele-
ments in the 3-D model. (Recall the much closer prediction that was provided by the more refined but
axisymmetric model of the normal direction analysis.) In addition, although S33 is near zero near the
contact radius, this variable is a principal stress and therefore representative of stress inside the solid.
Consequently, we expect S33 for this loaded solid to only asymptotically reach zero.

Fig. 33 shows the contact tangential traction CHSHEAR at the maximum force level in loading history
O1. We also show for comparison the shear stress S13 measured at the nodes of the C3D8 elements. The
plot of CHSHEAR matches the theory of Cattaneo (1938a,b,c) and Mindlin (1949), with the exception of the
data point at » = 0. In addition, similar to CPRESS in Fig. 32, the CHSHEAR plot shows the same mis-
approximation of the contact-area radius.

Note that the plot of S13 does not exhibit the symmetry that is shown by the plot of CHSHEAR. The
asymmetry of S13 is caused by the stage of pure normal loading in loading history O1. That is, even
without an applied tangential force, normal loading does induce small shear stresses in the spheres near the
contact surface. During the application of the tangential force (after the normal force reaches its maxi-
mum), shear stresses increase but from non-zero and asymmetric values.

Note that the present calibration analyses resulted in contact areas that were within the bounds of the
highly refined core regions. This restriction is advantageous for two reasons. First, the contact occurs
within elements that have small edge lengths, thus ensuring improved accuracy over an otherwise coarse
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Fig. 33. Tangential traction and shear stress for Ol at maximum tangential force.

mesh. Second, the bounds of the core regions correspond to an approximate maximum contact-area of just
Rsin(0.8°) & 0.01R. This small contact-area is in line with Hertz’s assumption that the contact-area radius
be much smaller than the sphere radius.

In other trial discretizations with larger core regions and larger maximum normal loads, the FD curves
did not match well with HCMD theory. In fact, the TFD results in particular showed increased stiffness
over the theory and over the present FE mesh.

Loading history O1 with elastic material properties required 18.4 min of CPU time on a DEC Alpha 250
workstation with 64 MB of RAM and running DEC Unix 3.2. Under the same conditions, loading history
02 required 30.5 min of CPU time.

3.4. Elasto-plastic analysis

To identify the behavior of the FD relationship in the oblique loading of elasto-plastic spheres, we repeat
the previous analysis with rate-independent perfect plasticity. As in the normal-loading analysis, we set the
material yield stress to oy = 1.0 x 108 N/m?, implying that the normal force at yield is Py = 36.4 N. As an
example of a less ductile material, we also run the analysis with oy = 2.0 x 103 N/m?, which corresponds to
Py =291.6 N. Table 3 summarizes the input parameters of the elasto-plastic analyses.

Fig. 34 shows the NFD result for the current elasto-plastic analysis under loading history O1. (Note that
O1 does not include an unloading phase.) Fig. 34 suggests a trend of softening of the NFD curve for spheres
with plastic material properties. As expected, the degree of softening increases with yield stress. These
trends are in agreement with the axisymmetric investigations both in this paper and in those of other
researchers (e.g., Walton, 1993; Vu-Quoc et al., 2000b; Vu-Quoc and Zhang, 1999).

Table 3

Summary of loading histories and yield stresses for elasto-plastic oblique FEA
Analysis Loading history oy (N/m?) Py (N)
OEP1.1 01 1.0 x 108 36.4
OEP1.2 o1 2.0 x 108 291.6
OEP2.1 02 1.0 x 108 36.4

OEP2.2 02 2.0 x 108 291.6
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Fig. 35. Tangential force Q versus tangential displacement o for elasto-plastic analysis under loading history O1.

Fig. 35 shows the TFD results for loading history O1. Unlike the NFD plots, the TFD results show a
stiffening due to plastic flow in the sphere material. We justify the stiffening using the concept of equivalent
elasticity and the HCMD theory. That is, according to Eq. (3.5), the tangential stiffness of the contact
should increase when the contact-area increases. Since our normal loading analysis (together with common
sense) confirms that contact-area increases with plastic flow, the increased tangential stiffness is plausible.

Fig. 36 shows the NFD results for loading history O2. The plot again shows softening due to the plastic
flow, a behavior that is similar to that obtained for the loading history O1. The figure also shows the NFD
behavior during unloading, where the plastic flow causes a permanent normal displacement and an energy
loss within the NFD plot, (i.e., the unloading curve is different from the normal loading curve).

Fig. 37 shows the TFD result for the loading history O2 under the current plastic analysis. This plot
shows a trend that is decidedly different from the result of the loading history O1. That is, while the TFD
curve stiffens under constant normal force, the TFD curve appears to soften under a varying normal force.
This trend poses a challenge to the development of a TFD model for particle simulation: The model must
approximate stiffening under P-constant, but it must also show softening under P-varying.
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Fig. 37. Tangential force Q versus tangential displacement ¢ for elasto-plastic analysis under loading history O2.

In Fig. 37, the TFD plot for the case OEP2.1 (see Table 3) shows a series of severe bumps during most of
the loading portion. During unloading, the bumps do not appear. We attribute this loading behavior to the
increasing contact-area that occurs as a result of the increasing normal load. We surmise that the steep
portions of the bumps correspond to new nodes being added to the contact-area. (Recall that counting
additional contacting nodes is one method to measure an increase in the contact area.) The absence of
bumps during unloading can be explained by the relatively slow or zero change in contact-area during that
portion of the loading history. That is, permanent deformation has occurred, which corresponds to only
minimal recovery of the material during unloading.

We propose that the severity of the bumps may be connected to the relative refinement of the FE mesh.
As shown in Fig. 25, the contact area for the current analysis contains at most eight nodes in the radial
direction. Consequently, relatively large normal force increments are required to add nodes to the contact-
area. A more refined mesh (perhaps closer to the order of refinement that is shown in the axisymmetric
model of Fig. 4) may decrease the normal force increment that causes increases in contact-area (or addi-
tional contacting nodes). Consequently, the FD curves may show bumps that are reduced in severity.
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Table 4

Energy losses for the present oblique analyses
Case oy (N/m?) Py (N) NFD area (Nm) TFD area (Nm)
OEP1.1 1.0 x 108 36.4 N/A (no unload) 53722 x 1074
OEP1.2 200 x 10° 291.6 N/A (no unload) 4.3246 x 107
Elastic FEA, 01 N/A (elastic) N/A N/A (no unload) 3.6848 x 1074
HCMD theory, O1 N/A (elastic) N/A N/A (no unload) 3.7494 x 10~
OEP2.1 1.0 x 108 36.4 7.00 x 1073 5.63x 1074
OEP2.2 200 x 10° 291.6 2.6 x 1073 1.87 x 107*
Elastic FEA, 02 N/A (elastic) N/A 4.12x 107 2.55%x 1073
HCMD theory, O2 N/A (elastic) N/A 0 2.77 x 1073

Table 4 shows the energy losses that are associated with the oblique loading analyses of this section. We
measure energy losses (which also correspond to different values of the coefficient of restitution in the
normal loading case) via the areas within the bounds of the FD curves. These areas provide important
baselines to which FD models should be compared. (Correctly representing energy loss is one of the main
goals of an effective FD model.)

In summary, for the 3-D elasto-plastic FEA results, one observes an influence of the presence of the
tangential force in the NFD relationship (Fig. 36) by presence of a series of mild bumps that correspond to
the more severe bumps in the TFD relationship (Fig. 37). We note that there are some mild deviations from
smoothness in the NFD relationship in Fig. 34, while the TFD relationship in Fig. 35 is smooth. Based on
the above observation, which forms a cornerstone for our strategy in developing completely consistent
elasto-plastic NFD and TFD models, we develop in Vu-Quoc et al. (2000b) and in Vu-Quoc and Zhang
(1999) an elasto-plastic NFD model independent of the tangential force. Our elasto-plastic TFD model
does include, however, the influence of the normal force.

Recall that we apply a friction coefficient of 0.2 throughout the oblique loading analyses. Since the
tangential force never exceeds the friction limit uP, the tangential force is always less than 20% of the
normal force. For cases of higher friction coefficient, the tangential force may have a significant effect on
the NFD relationship.

This potential coupling between normal and tangential effects represents one of many opportunities for
future analyses of elasto-plastic frictional spheres in contact. Specifically, further work is needed to fully
characterize the relationships between normal and tangential stresses, and between normal and tangential
FD relationships, in the presence of plasticity. In addition, further work is needed to quantify the effects of
possible deviations from the assumptions of HCMD theory. For example, Cattaneo (1938a,b,c) and
Mindlin (1949) both assumed that lateral frictional traction (i.e., perpendicular to the directions of the
normal and tangential forces) could be neglected. Both authors also assumed a circular and planar contact-
area. For spheres of elasto-plastic material, it can not be expected that these assumptions would hold true.

Analyses OEP1.1, OEP1.2, OEP2.1, and OEP2.2 required 31.0, 21.0, 56.8, and 47.5 min of CPU time.
The analyses were performed on a DEC Alpha 250 workstation with 64 MB of RAM and running DEC
Unix 3.2.

4. Closure

We present the data obtained from numerical experiments that are at the foundation of our successful
elasto-plastic FD models in both the normal direction and tangential direction of spheres in collision. We
also present in detail how these data were obtained.
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Our goal is to develop elasto-plastic NFD and TFD macroscopic models that are simple and accurate in
capturing the effects of plastic deformation for granular flow simulations that involve thousands or hun-
dreds of thousands of particles. Using the observations of the elasto-plastic NFD relationship obtained
from numerical experiments, we propose an efficient and accurate NFD model in Vu-Quoc et al. (2000b)
(force-driven version) and in Vu-Quoc and Zhang (1999) (displacement-driven version). It is noted that the
displacement-driven version is needed in granular flow simulations using discrete element method. Our
elasto-plastic TFD model, which is consistent with our elasto-plastic NFD model, is presented in Vu-Quoc
et al. (2000a) (force-driven version).
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